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A new derivation of two important one-dimensional time-dependent distribu- 
tions for an infinite system of hard rods is presented. This derivation is 
simpler than previous derivations and it provides a direct physical inter- 
pretation of the individual terms in the final expressions. A new, more 
unusual distribution is also presented and discussed. Finally, an exact 
expression for the diffusion of a Brownian particle is obtained and compared 
with the exact expression for the self-diffusion coefficient. 

KEY W O R D S :  One-dimensional; diffusion; conditional self-distribution; 
hard spheres; Brownian motion. 

Jepson (11 has der ived several interest ing exact  expressions descr ibing the 
t ime-dependen t  behav ior  o f  a one-d imens iona l  system of  ha rd  rods.  One 
o f  his mos t  in teres t ing results is a relat ively s imple expression for  p (  y, t),  the  
p robab i l i t y  o f  f inding a rod  at  y at  t ime t i f  it  was at  the  origin at  t = 0. 
A t  long t ime p ( y ,  t) becomes  Gauss i an  with  a diffusion coefficient equal  to  

D = (1/p) vg(v)dv (1) 

where p is the densi ty  and  g(v) is the ini t ial  veloci ty d is t r ibut ion.  Lebowi tz  
and Percus ~2~ e labora ted  on these resul ts  in a la ter  paper .  The  basis o f  thei r  
discussion was the  cond i t iona l  se l f -dis t r ibut ion f s ( Y ,  v, t/v') which is the  
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probability of finding a rod at y with velocity v at time t that was at the origin 
with velocity v' at t = 0. These exact solutions are not only useful as tests of 
the validity of the approximate methods that have been developed for 
three dimensions, but they also have an intrinsic appeal of their own. In this 
paper a new derivation of these distributions will be presented. This derivation 
is not only much simpler, but since it is based almost entirely on physical 
arguments, the significance of the various terms in the final expressions are 
self-evident, whereas in the previous, more mathematical derivations the 
physical significance of the individual terms was obscured. 

An infinite one-dimensional system of hard points will be considered. 
The results derived in this paper can be carried over directly to a system of 
rods with a finite length a simply by substituting for the point density p the 
expression p / ( 1 -  pa). For this system the rods simply exchange their 
velocities upon colliding so that a trajectory with a particular velocity is 
not affected by the collision. The only effect of the collision is to change the 
label of the rod on the trajectory. Thus the system can be described (as was 
done by Jepsen) by drawing the lines of the trajectories and labeling them by 
the number of the rod that is on them at t = 0 (Fig. 1). The slope of  the line 
is determined by the velocity of the trajectory. 

An ensemble of systems will be considered with the rods initially 
distributed with a probability distribution p dy with each rod having a velocity 
distribution g(v) dv. This spatial and velocity distribution will persist for all 
times as can be easily seen by considering any interval dy at time t and tracing 
the trajectories that pass through it back to t = 0. As is shown in Fig. 1, 
a rod (labeled "0")  is assumed to be at the origin at t = 0. Also shown in 

/ / /  Y 

0 
y ~  

Fig. 1. Diagram showing how the "trajectories" simply pass 
through one another when the one-dimensional rods collide. The 
dashed line is a "test" trajectory with a velocity vo �9 It is not related 
to the actual velocity of the rod initially at the origin. 
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Fig. 1 is a dashed line which represents a "test" trajectory with a volocity 
v0 which will be used in the following derivation. Since the rods are 
impenetrable, everytime a trajectory crosses the "test" trajectory from the 
right the particle number of  the rods immediately to the left and immediately 
to the right of  the "test" trajectory will be raised by one (assuming the rods 
are originally numbered consecutively and increasing to the right). Similarly, 
if a trajectory crosses the "test" trajectory from the left the number of the 
nearest rods on each side of the test trajectory will be lowered by one. Thus, 
as was first pointed out by Jepsen, the number of the rod immediately to the 
right (or left) of the trajectory at time t will be changed by an (integer) 
amount  ~ (positive, negative, or zero) if the test trajectory is crossed o~ more 
times from the right than from the left in time t. Then, define A~(vo, t)  as 
equal to the probability that the number of the rod immediately adjacent to 
the test trajectory with a velocity v0 has been changed by an amount ~ in 
time t. I f  PR(Vo, n, t)  and PL(Vo, n, t) are the probabilities that the test 
trajectory is crossed n times from the right or left, respectively, in time t, 
then 

A~(vo, t) = ~ PR(Vo, n, t) PL(Vo, n - -  ~, t) 
n = 0  

(2) 

These probabilities are ensemble averages over the initial conditions. To 
obtain PR(Vo, n, t) consider the probability that the test trajectory is crossed 
from the right during the time interval between t and t 4- dt by a trajectory 
of  velocity v. If  a trajectory of velocity v crosses the test trajectory in this time 
interval it must have originated initially from a position between x and 
x + dx,  where x = (v0 -- v) t and dx  = (Vo - -  v) dt. Since the distribution 
of  the rod positions is uniform, the probability of  finding a rod with velocity v 
in the region dx  is pg(v) dx  dr. Finally, the probability that a trajectory of 
any velocity crosses the test trajectory in this time interval dt is 

p dt (v o - -  v) g ( v ) d v  (3) 

where v must be less than v 0 if the trajectory crosses from the right. 
Equation (3) can be written in the form BR dr, where 

BR ~ p (v o - -  v) g(v) dv 
c o  

Since B R is independent of time, the number of crossings follows a Poisson 
distribution and 

PR(VO , n, t) = e -BR~ (BRt)~/n! (4) 
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Similarly, 

where 

PL(Vo, n, t) = e -BL~ (BLt)n/n! 

f 
~ 

B,~ = t' (v - -  Vo) g (v )  dv  
q)O 

(5)  

Substituting Eqs. (4) and (5) into Eq. (2), we have 

A~(vo, t )=  ~ e -~R~ (B~t)~ e -~L~ (Bzt)~-~ 
~=0 n ! (n - ~ )  ! 

= e-~BR+~gt (Bg)-~ {(BLBR)I/z t] ~ ~ [(BLBR)I/~ t] 2n-~ 
~=o n ! ( n -  ~)! 

_ e_(BR+BL)~ ( BR ~/2 
- -  \-ffZl I_~[2(BLBR) 1/2 t] (6) 

where/_~ is the imaginary Bessel function of order --c~ and for integer ~, 
l~(x) = L~(x). Although A~ is equivalent to the function J~) in Jepsen's 
paper  and A_~ in Percus and Lebowitz's paper, the physical significance of 
this expression has not been pointed out previously. 

The following argument allows one to write down the distribution 
fs(Y, v, t/v') directly in terms of the above A's. Suppose that at time t there 
have been no net crossings of  the test trajectory Vo. That  means that the 
particle initially at the origin will be the nearest neighbor on the left at time t 
if it started initially to the left of  Vo (v' < v0). Now consider an interval Ay 
about  v0 at a time A t later, where A t is small enough to allow one to assume 
that  if a rod is in Ay it has not suffered a collision between t and t + At. Now 
the knowledge that there have been no net crossings of  v0 at time t restricts 
the trajectories that can cross Vo for r < t. However, if Ay is made small 
enough (Ay ~ ~ A t), the probability that  any of the trajectories which cross 
v 0 for ~- < t enter Ay can be made arbitrarily small. Thus the spatial and 
velocity distributions in Ay at time t + A t are undisturbed by the knowledge 
that  there have been no net crossings at time t and the probability of finding 
a particle in Ay is p Ay and its velocity distribution is g(v) dr. This probability 
is based on the initial distribution, neglecting the fact that it is known that  
there was a trajectory at the origin. This single trajectory will be included 
later. Note also that  the probability that there are no net crossings at time t 
(A0) is not correlated with the trajectory that originates at the origin because 
this trajectory cannot cross the test trajectory. I f  the particle in Ay at time 
t + A t has a velocity greater than v 0 it must have been to the left of  v0 at 
time t (assuming the condition that Ay ~ ~ At) and would have been the 
nearest left neighbor if A t is small enough. Thus we have the result that the 
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particle initially at the origin with velocity v' will be in the interval A y  about 
the point y ----- Vo(t § At)  at time t § At  if: (a) it initially started to the left 
(v' < v0); (b) there are no net crossings at time t [with a probability 
Ao(y/t ,  t)]; (c) its velocity at time t 47 At [which has a probability g(v) dv] is 
greater than v0, and (d) there is a trajectory in Ay  (with a probability p Ay). 
All of  these events are uncorrelated. Taking the limit allowing d y  -~ 0 and 
then At---~O, one arrives at one of  the terms which contribute to 

L ( y ,  v, t/v'): 

p dy g(v) dv u (y  --  v't) u(vt --  y)  .4o(y/t, t) 

where u is the unit step function. One will also find this particle which was 
was at the origin at t = 0 in d y  for the additional three sets of  conditions: 

1. It started to the right of v0 ; there are no net crossings, and it is now 
going to the left. 

2. It started to the right; there has been one net crossing from the right 
(with probability A0, and it is now going to the left. 

3. It started to the left; there has been one net crossing from the left 
(with a probability A_~), and it is now going to the right. 

These conditions have neglected the fact that it was known that there was a 
trajectory at the origin. If  this trajectory passes through Ay, then the particle 
on it will be the particle that started at the origin if there have been no set 
crossings at time t (because then the initial particle will be the nearest neighbor 
on the same side of v0 that it started off on, which will be the same side that 
the initial trajectory is on). Thus, adding up these five terms, one gets the 
final expression fo r f s  : 

f~(y, v, t/v') = pg(v)[u(y - -  v't) u(vt - -  y) Ao 47 u(vt - -  y) u(y  - -  vt) A o 

+ u(v't - -  y) u(vt - -  y) A1 + u(y  - -  v't) u (y  - -  vt) A_I] 

+ A0 8(y --  v't) a(v - -  v') (7) 

where 3 is the Dirac 3-function and where the A's are given by Eq. (6) with 
Vo = y/t .  This expression is identical to the result of Lebowitz and Percus. 
One can go immediately from this expression to the distribution p(y ,  t) 
simply by averaging over the distribution of the initial and final velocities. 
For the last term in Eq. (7) the probability that the initial trajectory is in 
dy at time t is equal to g(y / t )  dy/t. Thus the expression for p becomes 

p(y ,  t) = 2pG 0 --  G) A o + pG2A1 + p(1 -- G) ~ A-1 --[- (l / t)  g(y / t )  Ao (8) 
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where G is the probability that v > v o = y/t: 

s/ G(y/t) = g(v) dv (9) 

It can be easily shown that this result is identical to that of Jepsen. 
Some other, more unusual, distributions can also be written down 

directly in terms of the A's. For  example, suppose that instead of the "test" 
trajectory originating from a point where a rod is initially, it starts at a 
random position, i.e., between two neighboring rods. Now consider the short 
line segment that joins these two neighboring rods, and determine the distri- 
bution s2(y, t) dy that the point y lies on this line segment at time t. This 
distribution is obviously just Ao(y/t, t) since if there have been no net crossings 
of the "test" trajectory at time t, then the point y = rot must lie between 
the two rods that were on opposite sides of the point y = 0 at t = 0. A0 is the 
ensemble average of the function V 0 , which is equal to one if y lies on this 
line segment at time t and zero otherwise for each of ensembles. 
Integrating V 0 over y yields the length of the line segment at time t for that 
ensemble. Thus, interchanging the order of the integration and the ensemble 
average, it is clear that the integral over y of A0 yields the average length of 
this line segment at time t. It is easy to show that as t --~ 0, A 0 approaches 
exp(--O [ y 1). This is the initial probability that there is no particle in the 
region ( - -y  < co < y) and therefore the probability of still being on the line 
segment, as expected. Integrating A0 in this limit over y yields a value of 2/p. 
In the limit as t --+ 0% A 0 approaches a Gaussian (as do all the A~-) whose 
integral over y is equal to 1/p. This illustrates the classic Paradox that  when 
a random position is picked on a line with uniformly distributed points the 
average separation of the neighboring points is twice the average for the 
whole line. After a long time these neighbors forget their unique initial 
condition and now have the average separation 1/p. 

It is easy to extend this derivation to a line segment connecting n 
contiguous rods. If  n is odd, one can avoid the problem of the peculiar 
initial length. For  example, let the test trajectory originate from a rod and 
consider the line segment that connects the two rods which lie on either side 
of the central rod. The point y = rot will lie on this line segment if (a) there 
have been no net crossings at time t, or (b) there has been one net crossing 
from the left and the rod at the origin started off to the left of the test 
trajectory, or (c) there has been one net crossing from the right and the rod 
started off to the right. Since there is now nothing special about the initial 
distribution around the "test" trajectory, the integral over y of the sum of 
these three conditions is equal to 2/p at all times and the normalized distri- 
bution s3(y, t) is equal to 

s3(y, t) = (p/2)[Ao -? A_a(1 -- a )  -t- A~(G)] (10) 
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This can be generalized to the line segment that connects the end points of 
a sequence that consists of n (odd) adjacent points: 

-- 1- Aj + A_(x+l)(1 -- G) -5 A(K+I)G (11) 

where K = (n -- 3)/2 and where s , (y ,  t) is the normalized probability that 
the point y lies on this line segment at time t, and at t = 0 the line segment is 
centered about y = 0. As t --~ oo all the A~ become Gaussian with the same 
diffusion coefficient [Eq. (1)] so that s ,  also becomes Gaussian with this 
diffusion coefficient. That is, after a long enough time, the line segment which 
is n particles long has exactly the same distribution about the origin as does 
a single particle. This is not unexpected since n particles which are initially 
adjacent must remain adjacent at all times and when the displacement 
becomes long with respect to the length of the line segment, any one of the 
particles on the line segment is representative of the position of the whole 
segment. 

This observation may explain the computer (molecular dynamics) results 
of Bishop and Berne. 13~ They had obtained the dynamics of 1000 particles 
interacting with a Lennard-Jones potential in a periodic one-dimensional 
system. They then attempted to study the behavior of a Brownian particle by 
observing the movement of a contiguous cluster of n particles (the mass of 
the "Brownian" particle was n times that of a single particle). Although the 
above results for hard spheres are not exactly applicable to these computer 
experiments, the general behavior should be the same. Thus one would 
expect that after a long enough time the diffusion of the duster should be the 
same as the diffusion of a single particle. This would explain the observation 
of Bishop and Berne that the diffusion coefficient of the "Brownian" particle 
was mass independent. 

An exact expression for the one-dimensional diffusion coefficient of a 
Brownian (B) particle is already available in the hard-sphere case. Green ~a) 
has derived the friction coefficient ~ for a B particle in a (three-dimensional) 
gas of noninteracting hard spheres. For this gas Green's result becomes 
exact in the limit where ), = me/m becomes large (where m~ and m are the 
masses of the Brownian and fluid particle, respectively). Since in a one- 
dimensional system of hard rods the trajectories simply pass through each 
other (Fig. 1), the fluid behaves exactly as if it were noninteracting. A 
deviation from the noninteracting assumption could occur only if the B 
particle collided with a fluid trajectory (which would then have its velocity 
changed or "bent") and then collided again with that "bent" trajectory at 
a later time. However, if y is large, the "bent" trajectory will move away from 
the B particle with a relatively high velocity and the probability that the B 
particle will collide with it again will be negligible. Thus Green's result is 
exact for a one-dimensional B particle in the limit of large ;~. 

822]7/4-4 
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Modifying Green's derivation for the one-dimensional case, one finds 
an expression for the diffusion coefficient of  the B particle: 

De = kT/mB~ -- kT/8pf~m (12) 

where ~ = J'0 vg(v) dr. I t  can be seen that De is independent of  the mass of  
the B particle (if 7 is large enough). Comparing Eq. (12) with Eq. (1), it can 
be seen that if g(v) is Maxwellian, the ratio of  De to D (self-diffusion coef- 
ficient) is ~r/4. These results are consistent with the molecular dynamic 
results of  Bishop and Berne ~3~ although, as was mentioned above, their 
results may also be explained by the fact that they did not study a real 
Brownian particle. 
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